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Spin-Orbit Coupling in Chelates 
with Conjugated Ligands 
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In the paper the spin-orbit coupling in chelates with conjugated ligands has been 
studied theoretically. The proposed models were used for the calculation of the 
lifetime of the 3P 2 electron-transfer triplet state of the complex ion Ru(phen)~ 2. 
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In the literature there are many papers dealing with the luminescence properties of 
transition metal complexes. The complexes of 4d 6 and 5d 6 elements with 7r-conjugated 
ligands has been especially studied in the last ten years because of their unusual lumi- 
nescence properties [1-15]. Thus, in complexes of Ru(II) with conjugated ligands 
(e.g. 2,2'-bipyridyl and 1,10-phenanthroline) a n* --* d emission has been observed [16], 
and the experiments have shown that the emission occurs from a manifold of three 
levels' of different multiplicity [7, 12, 13, 15]. As has been demonstrated [ 12], at low 
temperatures the luminescence exhibits the properties of a phosphorescence, while at 
high temperatures the radiation obtains an increasing amount of fluorescence character. 
Spin-orbit coupling plays a dominant role in this process due to the presence of heavier 
transition elements. In this short note the problem of spin-orbit coupling in complexes 
of nd 6 metal ions with conjugated ligands is discussed theoretically. For the descrip- 
tion of complex particles we have used the "coupled chromophore" model proposed 
by Longuet-Higgins and Murrell for studies of conjugated 7r-electron systems [17]. 
On the basis of this model the matrix elements of the spin-orbit operator are given: 

(ET, P~, O, 0 IH s~ lET, Pj, 1, O) 

ri r. h = (D h D #  - D#Dkr ri) 7 ~M(m(Ph) llzlrn(pk)) (1) 
h < k  

and 

(ET, Fi, O, 01H s~ ] ET, I~/, 1, +- 1 ) 

I" i I'. F" F i h = (D h D #  - D # D  k ) -~ ~M(rn(ph)ll x + ilyl m(pk)) 
lTKk  

(2) 

where Drr s are the group transformation coefficients with Ps indicating the symmetry 
properties of the electron-transfer states and r labelling the ligand molecules in which 
a d-electron from the central metal ion has been excited. For the derivation of these 
expressions the isomorphism of t2g-electrons with p-electrons was taken into account 
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[18], i.e. the t2g orbital functions of the metal were formally replaced by p orbital 
functions 

rn(t2g) = m(p) (3) 

and 

~Mlm(t2g) �9 S = - -~Mlm(p)  �9 S (4) 

The results can be used for the calculation of the natural decay lifetime of the electron- 
transfer triplet state. The formula for the lifetime r ~ of the triplet state [19] is in the 
dipole velocity representation of the form 

1 _8~hoe2 ~ ~ (ET, 1"i,O, OIHS~ 1"! . . . .  
~ 3m2c 2 E(ET,o)--E(~T,1) 1,Ms) 2 

(ET,O) M S 

x I(ET, 1"i, O, 01VI G, F, 0, 0)12 (5) 

where the first summation runs over all singlet electron transfer excited states, o is the 
wave number of the emission transition and e, h, m, and c have their usual meanings. We 
applied Eq. (5) for the calculation of the lifetime of the triplet states originating using 
spin-orbit coupling mechanism from the 11"3 electron-transfer state of the complex ion 
Ru(phen)~ 2 (phen = 1,10-phenanthroline) (i.e. the electron-transfer state having the 
lowest energy [20] ). The only non-zero matrix element of the operator H s~ is 
(ET, 1"3, O, 0 I H s~ lET, 1"z, 1, 0). For the solution of this matrix element Eq. (1) has 
been used. The formally introduced p orbitals were transformed like p orbitals of the 
ligand molecules into which the metal electron is excited (see Fig. 1). Thus, the p 
orbitals of the first, second and third ligand transform like Pz, Py and Px, respectively. 
The calculated value of the matrix element is 

1 
(ET, I" 3, 0, 0 IHS~ 1"2, 1,0) = i ~  ~Ru 

VO 

<l 
N 

Fig. 1. The coordinate system of Ru(phen)~ 2 
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Table 1. Interatomic distances in Ru(phen)52-* 

Bond Length Bond Length 
M-X in A M-X in A 

Ru-N1 2.1 Ru"C5 
Ru-N lO Ru--C6 

Ru-C2 3.24 Ru-C 11 
Ru-C 9 Ru--C t2 

Ru--C3 4.41 Ru-C13 
Ru--C 8 Ru-C 14 

Ru-C4 4.79 
Ru-C7 

5.17 

2.79 

4.13 
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where 

~Ru = 1000 cm -1 (see [21]).  

The matr ix elements of  the operator V were calculated using the same procedure as 
published in the literature [22].  The necessary distances of  the carbon and nitrogen 
atoms from the central metal ion are given in Table 1. The carbon and nitrogen func- 
tions were taken in mono-~ form [23],  the atomic ruthenium function is the same as 
that published by Richardson et  al. [24].  In addit ion the SCF molecular orbitals given 
for 1,10-phenanthroline by  Ito et al. were used [25] .  With cr = 17 550 cm -1 and with 

E(ET,  O) -- E(ET,1)  = 4050 cm -1 (see [26] ) we finally obtained the value of  the lifetime 
of  the 3F 2 metal-to-ligand electron-transfer state @ = 4.8 �9 10 -s sec, while the experi- 
mentally observed value is of  the order of  10 -s  sec. 

In spite of  good agreement of  the theoretical and experimental  values, the whole 
luminescence process is not simple, as was shown by  Crosby et  al. [7, 12, 13, 15],  

and to understand them more study must be done about the electronic structure of  
these types of  complex compounds.  From our study the l imitat ion for the non-zero 
spin-orbit coupling in complexes with conjugated ligands results. The condit ion for the 
mixing of  singlet and triplet electron-transfer states via the spin-orbit coupling mechanism 
is the non-coplanar arrangement o f  two or more coordinated ligand molecules, as is seen 
from Eqs. (1) and (2). In connection with this statement are the phosphorescence 
properties caused due to the electron-transfer transition, i.e. only molecules with non- 
coplanar coordinated n-electron ligands are able to produce (neglecting t r iple t - t r iple t  
mixing) n* -+ d emission. 
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